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Explicit expressions for the electric and magnetic fields of a moving magnetic dipole

JoséA. Heras
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, 01000 Me´xico Distrito Federal, Mexico

~Received 9 April 1998!

Explicit expressions for the electric and magnetic fields of an arbitrarily moving particle possessing a
constant magnetic moment are derived from retarded integrals representing the solution of Maxwell’s equa-
tions for electric and magnetic fields of a magnetized source. These expressions exhibit explicitly the useful
separation of the fields into their 1/R, 1/R2, and 1/R3 parts. The total power radiated by this magnetic dipole
is then calculated when the velocity, acceleration, and the derivative of acceleration are parallel. The low
velocity limit of this power and the conservation of energy are used to derive a nonlinear damping force acting
on a nonrelativistic magnetic dipole.@S1063-651X~98!09709-8#

PACS number~s!: 03.50.De, 41.20.Bt, 41.60.Ap
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I. INTRODUCTION

It is well known that a dipoleat rest ~at the source poin
x85x0! with a constant magnetic momentm yields the mag-
netostatic field:B5@3n(n•m)2m#/R3, whereR5ux2x0u is
the magnitude ofR5(x2x0), with x being the field point
and n5R/R. The natural question then arises: How is th
magnetostatic field modified when the dipole is set in ar
trary motion? This basic question of classical electrodyna
ics was treated in the 1960s by several authors@1#. However,
it is somewhat surprising to note that none of them deriv
explicit expressions for the fields of an arbitrarily movin
particle with a constant magnetic moment in terms of c

ventional parameters~n,b,ḃ,...! and exhibiting the usefu
separation of the fields into their 1/R, 1/R2, and 1/R3 parts.
However, expressions for the 1/R part of these fields, the
so-called radiation fields, have recently been derived@2,3#.

In this paper general formulas for the electric and m
netic fields due to a magnetized source are derived by m
ing the replacementsr50 andJ→c¹3M into the general-
ized Coulomb and Biot-Savart laws@4–6# and using certain
integral relations that are proved in the Appendix. The g
eral formulas are first applied to find the electric and m
netic fields of an oscillating magnetic dipole by recognizi
that the magnetic field contains a delta term that has b
ignored by the standard literature. It is shown that this de
term accounts for the interaction energy of two oscillati
magnetic dipoles. In a second application, novel express
for the electric and magnetic fields of a moving particle p
sessing a constant magnetic moment are derived. T
fields are given in terms of their explicit 1/R, 1/R2, and 1/R3

parts. The total power radiated by this magnetic dipole
then determined, in the simple case in which the vectorsb,
ḃ, andb̈ are parallel. The low velocity limit of this radiate
power is used to derive a nonlinear damping force from
conservation of energy. It is pointed out that the lineariz
version of this force corresponds~up to a constant! with the
expression for a radiation damping force of a quantum p
ticle with a spin magnetic moment recently derived
Smirnov @7#.

The organization of this paper is as follows. In Sec.
formulas for electric and magnetic fields of a magnetiz
PRE 581063-651X/98/58~4!/5047~10!/$15.00
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source are derived. In Sec. III these formulas are applie
finding the fields of an oscillating magnetic dipole. In Se
IV the electric and magnetic fields of an arbitrarily movin
particle with a constant magnetic moment are derived. Th
fields are expressed in terms of their 1/R, 1/R2, and 1/R3

parts in Sec. V. The power radiated by the magnetic dipol
obtained in Sec. VI and used to find a radiation damp
force.

II. THE FIELDS OF A MAGNETIZED SOURCE

Consider the time-dependent generalizations of the C
lomb and Biot-Savart laws as given by Jefimenko@4–6#. In
Gaussian units these laws can be written as@3#

E5E E d~u!S rn

R2 1
ṙn

Rc
2

J̇

Rc2D d3x8dt8, ~1a!

B52E E d~u!S n3J

R2c
1

n3 J̇

Rc2 D d3x8dt8, ~1b!

where the time integration is from2` to 1` and the spatial
integration is over all space; the retardation effect is provid
by the delta functiond(u) with u5t81R/c2t where R
5ux2x8u and the overdot means differentiation with respe
to t8. Equations~1! can be used for deriving general expre
sions for the electric and magnetic fields of a magnetiz
sourceM in vacuum—in the context of this paper, the vect
M is assumed to be the source of the fieldsE and B. This
means thatM must be defined independently of the prop
fields E andB ~as a dipole moment density, for example!.

The time derivative in the last term of Eq.~1a! can be
taken out of the integral by performing an integration
parts and using the property]d(u)/]t852]d(u)/]t. Thus,
one has the equivalent form of Eq.~1a!:

E5E E d~u!S rn

R2 1
ṙn

RcDd3x8dt8

2
]

]t E E d~u!J

Rc2 d3x8dt8. ~2!
5047 © 1998 The American Physical Society
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With the formal substitutionsr50, J→c¹3M , Eq. ~2! be-
comes

E52
]

]t E E d~u!¹83M

Rc
d3x8dt8. ~3!

The spatial derivative in this expression can be removed
recasting it into time derivatives. In the Appendix it is show
that

E E d~u!¹83M

Rc
d3x8dt8

52E E d~u!S n3M

R2c
1

n3Ṁ

Rc2 D d3x8dt8. ~4!

Equations~3! and ~4! combine to yield

E5E E d~u!S n3Ṁ

R2c
1

n3M̈

Rc2 D d3x8dt8. ~5!

Consider now Eq.~1b! rewritten in the equivalent form

B52E E d~u!n3J

R2c
d3x8dt8

2
]

]t E E d~u!n3J

Rc2 d3x8dt8. ~6!

With the substitutionJ→c¹3M , Eq. ~6! becomes

B52E E d~u!n3~¹83M !

R2 d3x8dt8

2
]

]t E E d~u!n3~¹83M !

Rc
d3x8dt8. ~7!

In the Appendix it is shown that

E E d~u!n3~¹83M !

R2 d3x8dt8

52E E d~u!S 3n~n•M !2M

R3 1
n~n•Ṁ !2Ṁ

R2c D
3d3x8dt82

8pM

3
, ~8!

E E d~u!n3~¹83M !

Rc
d3x8dt8

52E E d~u!S 2n~n•M !

R2c
1

n3~n3Ṁ !

Rc2 D d3x8dt8 ~9!

and therefore Eqs.~7!–~9! combine to give the expression

B5E E d~u!S 3n~n•M !2M

R3 1
3n~n•Ṁ !2Ṁ

R2c

1
n3~n3M̈ !

Rc2 D d3x8dt81
8pM

3
. ~10!
y

Equations~5! and ~10! constitute the solution of Maxwell’s
equations

“•E50, ~11a!

“•B50, ~11b!

“3E1
1

c

]B

]t
50, ~11c!

“3B2
1

c

]E

]t
54p“3M , ~11d!

satisfying the conditions that the fieldsE and B ~and their
derivatives! vanish at infinity and the sourceM is confined to
a finite region of space. It should be noted that the te
~8p/3!M in Eq. ~10! is a function evaluated at the field poin
and the present time. Without the presence of this ‘‘conta
term, Eqs.~5! and ~10! do not strictly satisfy Maxwell’s
equations. Equation~10! may be interpreted then as follows
The fieldB is formed by two terms: The integral term rep
resents the value ofB outside the magnetized source whi
the contact term~8p/3!M represents its value inside th
source. A remarkable property of Eqs.~5! and ~10! is that
they do not involve spatial derivatives of the vectorM ,
which in most cases simplifies considerably the calculat
of the fields. It should be also mentioned that Eqs.~5! and
~10! ~without the contact term! were previously derived in
Ref. @2#.

III. THE OSCILLATING MAGNETIC DIPOLE

Consider a particleat rest ~at the pointx0! with a mag-
netic moment oscillating in timem5m(t)e, wheree is its
direction. The associated magnetization vector is given
M (x,t)5em(t)d(x2x0). With this source the integration o
Eqs.~5! and ~10! yields

E5
ṁ~ t8!n3e

R2c
1

m̈~ t8!n3e

Rc2 , ~12a!

B5
m~ t8!$3n~e•n!2e%

R3 1
ṁ~ t8!$3n~e•n!2e%

R2c

1
m̈~ t8!n3~n3e!

Rc2 1
8pm~ t !e

3
d~x2x0!, ~12b!

where nown5(x2x0)/ux2x0u and the overdot means dif
ferentiation with respect tot85t2R/c with R5ux2x0u.
Equations~12! ~without the delta term! are the well-known
fields of an oscillating magnetic dipole.

The novelty in Eq.~12b! is the presence of the conta
term (8p/3)m(t)ed(x2x0), which represents the magnet
field within the dipole. It is somewhat surprising to find th
this delta term is not usually mentioned in the stand
literature—in the static regime, however, the analogous d
term is well known@8#; it is precisely the term that accoun
for hyperfine splitting in the ground state of hydrogen@9,10#.
However, the delta term is necessary here for the consiste
of Eqs. ~12! with the Maxwell equations. Moreover, thi
delta term accounts for the interaction energy of two os
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lating magnetic dipoles. Indeed, the energy of an oscillat
magnetic dipolem5m(t)e in the presence of a magnet
field B is given byU52m(t)e•B. In particular, the energy
of an oscillating magnetic dipolem15m1(t)e1 in the pres-
ence of the magnetic fieldB of another oscillating magneti
dipole m25m2(t)e2 is

U52
m1~ t8!m2~ t !$3~e1•n!~e2•n!2e1•e2%

R3

2
ṁ1~ t8!m2~ t !$3~e1•n!~e2•n!2e1•e2%

R2c

2
m̈1~ t8!m2~ t !$~e1•n!~e2•n!2e1•e2%

Rc2

2
8p

3
m1~ t !m2~ t !d~x2x0!~e12e2!, ~13!

wherex2x0 is the separation of the dipoles. When the
poles are separated the delta term in Eq.~13! can be ignored.
However, when the dipoles are at thesameplace the delta-
term contribution accounts for the interaction energy.

IV. A MOVING PARTICLE POSSESSING A CONSTANT
MAGNETIC MOMENT

The problem of finding the fields of a point dipole
arbitrary motion is somewhat different from that of compu
ing the fields of a point charge in arbitrary motion@2#. In the
case of a moving chargee one solves the usual Maxwell’
equations with the sourcesr(x,t)5ed$x2r (t)% and J(x,t)
5ev(t)d$x2r (t)%. By analogy one might think that for a
moving dipole possessing a constant magnetic momentm the
problem consists in solving Maxwell’s equations~11! with
the sourceM (x,t)5md$x2r (t)%. However, there is a subtl
difference between the two cases. The electric charge is
served and Lorentz invariant and thereby it is necessa
independent of motion. Nevertheless, the magnetic dip
moment is not a Lorentz invariant. However, in the mod
assumed in this paper the point dipole is observed in a fra
where there is only magnetization and it is given
M (x,t)5md„x2r (t)….

Equation~5! can be written in the equivalent form

E5
1

c

]

]t E E d~ t81R/c2t !S n3M

R2 Dd3x8dt8

1
1

c2

]2

]t2 E E d~ t81R/c2t !S n3M

R Dd3x8dt8.

~14!

With the magnetizationM (x,t)5md$x2r (t)%, the volume
integrals in Eq.~14! can be done immediately, yielding
g

-

n-
ly
le
l
e

E52m3
1

c

d

dt E d„t81R~ t8!/c2t…S n~ t8!

R~ t8!2Ddt8

2m
1

c2

d2

dt2 E d„t81R~ t8!/c2t…S n~ t8!

R~ t8! Ddt8, ~15!

where nowR(t8)5ux2r (t8)u andn(t8)5@x2r (t8)#/R(t8).
Using the formula

E d„f ~ t8!2a…g~ t8!dt85
g~ t8!

ud f /dt8uU
f ~ t8!5a

, ~16!

with f (t8)5t81R(t8)/c, a5t, and d f /dt8512n•b, the
time integrals in Eq.~15! can be performed, yielding

E52m3
1

c

d

dt F n

R2~12n•b!G
ret

2m
1

c2

d2

dt2 F n

R~12n•b!G
ret

. ~17!

This equation can also be written in the convenient form

E5F1

c

d

dt S n

R2~12n•b! D1
1

c2

d2

dt2 S n

R~12n•b! D G
ret

3m,

~18!

on the understanding that@dF/dt# ret meansdF(t8)/dt and
not dF(t8)/dt8, that is, the ‘‘ret’’ outside the square bracke
applies to the arguments of the functions inside and no
the variable of differentiation@11#.

By a similar procedure, whenM (x,t)5md„x2r (t)… is
inserted into Eq.~10! and the integrations over the resultin
expression are performed one obtains the magnetic fiel
an arbitrarily moving magnetic dipole:

B5F3n~n•m!2m

R3~12n•b!
1

1

c

d

dt S 3n~n•m!2m

R2~12n•b! D
1

1

c2

d2

dt2 S n3~n3m!

R~12n•b! D G
ret

1
8p

3
md~x2r ~ t !….

~19!

A similar expression but without the delta term was obtain
by Monaghan in Ref.@1#. In the derivation of Eq.~19!, how-
ever, the assumption thatm is a constant vector has not ye
been used. This means that Eq.~19! is valid even in the case
that m is a function of time. However, by performing som
derivatives in Eq.~19! and makingdm/dt50 one obtains
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B5F3n~n•m!2m

R3~12n•b!
1

3

R2~12n•b! H 1

c

dn

dt
~n•m!1nS 1

c

dn

dt
•mD J 1$3n~n•m!2m%

1

c

d

dt S 1

R2~12n•b! D
1$n3~n3m!%

1

c2

d2

dt2 S 1

R~12n•b! D1
1

R~12n•b! H 2

c2

d2n

dt2
3~n3m!1m3S 1

c2

d2n

dt2
3nD1

2

c

dn

dt
3S 1

c

dn

dt
•mD J

1H 4

c

dn

dt
3~n3m!12m3S 1

c

dn

dt
3nD J 1

c

d

dt S 1

R~12n•b! D G
ret

1
8p

3
md$x2r ~ t !%. ~20!

This is an expression for the magnetic field of a moving dipole with constant magnetic moment.

V. THE EXPLICIT 1/ R3, 1/R2, AND 1/R PARTS OF THE FIELDS

Although Eqs.~18! and~19! are relatively simple, they do not exhibit explicitly the useful separation of the fields into
1/R, 1/R2, and 1/R3 parts. Such a separation of the fields, however, can be accomplished by performing all the specifi
derivatives in Eqs.~18! and~20!. This task, although straightforward, is extremely laborious. It involves long and complic
vector manipulations and the full expressions obtained for the fields turn out to be very lengthy.

It is convenient to begin with Eq.~18! rewritten as

E5FnH 1

c

d

dt S 1

R2~12n•b! D1
1

c2

d2

dt2 S 1

R~12n•b! D J 1
1

c

dn

dt H 1

R2~12n•b!
1

2

c

d

dt S 1

R~12n•b! D J
1

1

c2

d2n

dt2 S 1

R~12n•b! D G
ret

3m. ~21!
ing

r

By using the result@3#

1

c

d

dt
~Ri~12n•b! j !

5 jRi~12n•b! j 22S 2
n•ḃ

c
1

~n3b!2

R D ,

2 iRi 21~12n•b! j 21~n•b! ~ i , j integers!, ~22!

(ḃ5db/dt8) one obtains

1

c

d

dt S 1

R~12n•b! D5
n•ḃ

R~12n•b!3c
1

b•~n2b!

R2~12n•b!3 ,

~23a!

1

c

d

dt S 1

R2~12n•b! D5
n•ḃ

R2~12n•b!3c
1

b•~n2b!

R3~12n•b!3

1
n•b

R3~12n•b!2 , ~23b!

1

c

d

dt S 1

R~12n•b!3D5
3n•ḃ

R~12n•b!5c

2
2~n3b!22b•~n2b!

R2~12n•b!5 ,

~23c!
1

c

d

dt S 1

R2~12n•b!3D5
3n•ḃ

R2~12n•b!5c

2
~n3b!222b•~n2b!

R3~12n•b!5 .

~23d!

The last two expressions are used to derive the follow
result:

1

c2

d2

dt2 S 1

R~12n–b! D5
3~n•ḃ!2

R~12n•b!5c2 1
n•b̈

R~12n•b!4c2

1
2$2b•~n2b!2~n3b!2%~n•ḃ!

R2~12n•b!5c

1
n3~n3b!•ḃ22b•ḃ1n•ḃ

R2~12n•b!4c

1
b•~n2b!$2b•~n2b!2~n3b!2%

R3~12n•b!5

2
~n3b!2

R3~12n•b!4 , ~23e!

whereb̈5d2b/dt82. The time derivatives of the unit vecto
n are given by

1

c

dn

dt
5

n3~n3b!

R~12n•b!
, ~23f!
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1

c2

d2n

dt2
5

n3$~n2b!3ḃ%

R~12n•b!3c
1

n3~n3b!~12b2!

R2~12n•b!3 2
n~n3b!2

R2~12n•b!22
n3~n3b!

R2~12n•b!
. ~23g!

This last expression was derived by Wang@12#. Substitution of Eqs.~23a!, ~23b!, and ~23e!–~23g! into Eq. ~21! yields an
expression whose terms are arranged in order of decreasing powers of 1/R:

E5Fn@b•~n2b!$2b•~n2b!2~n3b!2%#

R3~12n•b!5 1
n3~n3b!$2b•~n2b!112b2%2n~n3b!2

R3~12n•b!4 1
2n$b•~n2b!%

R3~12n•b!3

1
2n$2b•~n2b!2~n3b!2%~n•ḃ!

R2~12n•b!5c
1

n$n3~n3b!•ḃ22b•ḃ1n•ḃ%1n3$~n2b!3ḃ%12n3~n3b!~n•ḃ!%

R2~12n•b!4c

1
n~n•ḃ!

R2~12n•b!3c
1

3n~n•ḃ!2

R~12n•b!5c2 1
n~n•b̈!

R~12n•b!4c2G
ret

3m. ~24a!

By a similar procedure, the use of Eqs.~23a!, ~23b!, ~23e!–~23g! into Eq. ~20! yields

B5Fn3~n3m!$2b•~n2b!2~n3b!2%$b•~n2b!%

R3~12n•b!5 2
n3~n3m!~n3b!2

R3~12n•b!4

1
m3~n3b!@112~n•b!23b2#12$n3~n3b!%3~n3m!@112~n•b!23b2#

R3~12n•b!4

1
$3n~n•m!2m%$b•~n2b!%22n3~n3m!~n3b!212n3~n3b!$n3~n3b!•m%22m~n3b!2

R3~12n•b!3

1
3n3~n3b!~n•m!13n$n3~n3b!•m%1$3n~n•m!2m%~n•b!2 2$n3~n3b!%3~n3m!1m3~n3b!

R3~12n•b!2

1
3n~n•m!2m

R3~12n•b!
1

2n3~n3m!$2b•~n2b!2~n3b!2%~n•ḃ!

R2~12n•b!5c
1

m3@n3$ḃ1n3~b3ḃ!%#

R2~12n•b!4c

1
n3~n3m!$n3~n3b!•ḃ22b•ḃ1n•ḃ%1@2n3$~n2b!3ḃ%#3~n3m!

R2~12n•b!4c

1
4$n3~n3b!%3~n3m!~n•ḃ!12m3~n3b!~n•ḃ!

R2~12n•b!4c
1

$3n~n•m!2m%~n•ḃ!

R2~12n•b!3c
1

3n3~n3m!~n•ḃ!2

R~12n•b!5c2

1
n3~n3m!~n•b̈!

R~12n•b!4c2 G
ret

1
8p

3
md$x2r ~ t !%. ~24b!
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The complicated expressions in Eqs.~24! represent the elec
tric and magnetic fields of an arbitrarily moving particle wi
a constant magnetic moment. It is now possible to answer
question in the Introduction: How is the magnetostatic fi
of a magnetic dipole modified when it is set in arbitra
motion? Answer: An arbitrarily moving magnetic dipo
modifies strongly its magnetostatic field in accordance w
Eqs. ~24!. However, a detailed interpretation of these eq
tions is a very complicated task. But there are some po
that are relevant for an interpretation of these equations:

~1! Near, intermediate, and far fields.As may be seen in
Eqs. ~24!, the fields separate naturally into three parts: T
near fields Enear and Bnear, which vary as 1/R3 and depend
on the velocity and magnetic moment; theintermediatefields
Eint andBint , which vary as 1/R2 and depend on the velocity
acceleration, and the magnetic moment; and thefar fields
Efar andBfar , which vary as 1/R and depend on the velocity
he

h
-
ts

e

acceleration, time derivative of acceleration, and the m
netic moment. Thus, the complete fields readE5Enear1Eint
1Efar , and B5Bnear1Bint1Bfar1Bdel, where Bdel denotes
the delta-function term (8p/3)md$x2r (t)%, which is evalu-
ated at the field point and the present time—this term rep
sents the magnetic field within the moving dipole; it is e
sential for achieving the consistency of Eqs.~24! with the
Maxwell equations~11!.

~2! Static limit. When the velocity, acceleration, and d
rivative of acceleration of the magnetic dipole are zero, t
is, when the dipole is at absolute rest, Eq.~24a! yields E
50 and Eq.~24b! reduces to the well known static form
B5$3n(n•m)2m%/R31(8p/3)md$x2x0%, wherex0 is the
point where the dipole is at rest@8#.

~3! Uniform motion. It follows from Eqs. ~24! that, in
contrast to the simple form of the fields of a charge mov
with constant velocity, the fields of a magnetic dipole
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uniform motion (ḃ5b̈50) exhibit an exceedingly compli
cated form. The electric field is given by the 1/R3 part of Eq.
~24a! and the magnetic field by the 1/R3 part of Eq.~24b!
plus the delta term, that is,E5Enear andB5Bnear1Bdel.

~4! Coulombian acceleration fields.The presence of the
acceleration vector in the intermediate fields is remarkabl
for a moving charge the acceleration appears only in the
fields. This result is better recognized when one assumes
velocities. Indeed, if the velocity of the dipole is small com
pared with that of light (b!1) then the intermediate fields i
Eqs.~24! reduce to

Eint5F3n~n•ḃ!2ḃ

R2c G
ret

3m, ~25a!

Bint5F $6n~n•m!22m%~n•ḃ!2n~m•ḃ!2ḃ~n•m!

R2c G
ret

.

~25b!

These fields may be called ‘‘Coulombian accelerat
fields.’’ The point here is that these fields, though depend
linearly on the acceleration, are not radiation fields sin
they vary as 1/R2.

~5! Radiation fields.Evidently, the far fields appearing i
Eqs.~24!,

Erad5F 3n3m~n•ḃ!2

R~12n•b!5c2 1
n3m~n•b̈!

R~12n•b!4c2G
ret

, ~26a!

Brad5@n# ret3Erad, ~26b!

are radiation fields. These fields depend on the velocity
linearly on the derivative of the acceleration as well as on
square of the acceleration. Now, in general,b, ḃ, andb̈ are
independent. This allows one to assumeb50 andḃ50 at
least instantaneously. In this case Eqs.~26! reduce to

Erad5Fn3m~n•b̈!

Rc2 G
ret

, ~27a!

Brad5@n# ret3E. ~27b!

Therefore, even when both the velocity and the accelera
of a magnetic dipole are instantaneously equal to zero~at the
retarded time!, the dipole can still produce a radiation fie
on account of the derivative of its acceleration.

VI. TOTAL RADIATED POWER BY A MOVING
MAGNETIC DIPOLE

Consider now the energy flux associated with the rad
tion fields. It is given by the Poynting vectorS
5(c/4p)Erad3Brad5(c/4p)uEradu2n. With this vector one
defines the radiated power dN(t)/dV5(S•n)R2

5(c/4p)uREradu2. This is the energy per unit time and un
solid angle that is radiated in the directionn at time t. The
radiated powerN(t) is connected with the radiated pow
P(t8) expressed in terms of the dipole’s own time by mea
of the relationship@13#
ar
w

g
e

d
e

n

-

s

dP~ t8!

dV
5

dN~ t !

dV
@12n•b# ret5

c

4p
uREu2@12n•b# ret.

~28!

By using Eq.~26a! one obtains

dP~ t8!

dV
5

1

4pc3 F ~n3m!2H 9~n•ḃ!4

~12n•b!9 1
6~n•b!2~n•b̈!

~12n•b!8

1
~n•b̈!2

~12n•b!7J G
ret

. ~29!

In order to find the total radiated powerP(t8) at a fixed time
t8, it is necessary to specify the vectorsm, b, ḃ, andb̈. The
simplest example of Eq.~29! is one in which the vectorsb,
ḃ, and b̈ are parallel. For the sake of simplicity consider
magnetic dipole that is moving along theZ axis. The geom-
etry is illustrated in Fig. 1. Therefore,b5 ẑb, ḃ5 ẑḃ, b̈
5ẑb̈, andm5 ẑm. With these specific values and withdV
5sinududf and n5 x̂(sinu cosf)1ŷ(sinu sinf)1ẑ cosu,
Eq. ~29! is first integrated overf:

P~ t8!5
9m2

2c3 F ḃ4E
0

p sin3 u cos4 u

~12b cosu!9 duG
ret

1
3m2

c3 F ḃ2b̈E
0

p sin3 u cos3 u

~12b cosu!8 duG
ret

1
m2

2c3 F b̈2E
0

p sin3 u cos2 u

~12b cosu!7 duG
ret

. ~30!

The integrals overu are computed directly and the resultin
expressions can be written in terms of powers ofg5(1
2b2)21/2:

E
0

p sin3 u cos4 u

~12b cosu!9 du52
4

35 S 21b4118b211

~b21!7~b11!7D
5

4

35
~40g14260g12121g10!,

~31a!

FIG. 1. Geometry of the radiation process.
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0

p sin3 u cos3 u

~12b cosu!8 du5
32

105 S 7b313b

~b21!6~b11!6D
5

32b

105
~10g1227g10!, ~31b!

E
0

p sin3 u cos2 u

~12b cosu!7 du52
4

15 S 7b211

~b21!6~b11!6D
5

4

15
~8g1027g8!. ~31c!

Substituting these values into Eq.~30! and performing some
manipulation one ends up with the total power radiated
the magnetic dipole when the vectorsm, b, ḃ, and b̈ are
parallel:

P~ t8!5
18m2

35c3 @ḃ4~40g14260g12121g10!# ret

1
32m2

35c3 @bḃ2b̈~10g1227g10!# ret

1
2m2

15c3 @b̈2~8g1027g8!# ret. ~32!

Evidently, the dynamics of the dipole is disturbed by th
radiation loss since it provokes a reaction force back on
dipole. To find an expression for the radiation reaction fo
Frad, consider the low velocity limit of Eq.~32!. The ap-
proximation b!1 implies g'1 and therebybg5Ag221
'0. This approximation also implies that the effect of ret
dation becomes unimportant@10#. Therefore, by writingḃ
5a/c and b̈5ȧ/c Eq. ~32! reduces to

P5
18m2a4

35c7 1
2m2ȧ2

15c5 . ~33!

It should be noted that an analogous formula for the elec
dipole has been recently derived@3#. As expected, the for-
mulas for the total power radiated by electric and magn
dipoles exhibit exactly the same structure. Therefore, the
sociated radiation reaction forces will exhibit necessarily
same form.

To determineFrad from the conservation of energy it i
necessary that the work done by this force on the magn
dipole in the intervalt1,t,t2 must be equal to the negativ
of the energy radiated, that is,* t1

t2Frad•vdt52* t1
t2Pdt. The

use of Eq.~33! yields

E
t1

t2
Frad•vdt52

18m2

35c7 E
t1

t2
a4dt2

2m2

15c5 E
t1

t2
ȧ2dt. ~34!

With the aid of the results

a45
d

dt
~a2a•v!23a2ȧ•v, ~35a!

ȧ25
d

dt
~a•ȧ2ä•v!1a&•v, ~35b!
y

e
e

-

ic

ic
s-
e

tic

the integrals on the right-hand side of Eq.~34! can be per-
formed by parts

E
t1

t2
Frad•vdt52

18m2

35c7 @a2a•v# t1

t22
2m2

15c5 @ ȧ•a2ä•v# t1

t2

1
54m2

35c7 E
t1

t2
a2ȧ•vdt2

2m2

15c5 E
t1

t2
a&•vdt,

~36!

wherea&5 ẑâ. The question now is under what conditions t
first two terms in Eq.~36! vanish. A first case would be whe
the motion is such thata2a•v50 and ȧ•a2ä•v50 at t
5t1 and t5t2 . A second case would be when the motion
periodic since then both quantitiesa2a•v andȧ•a2ä•v have
the same value att5t1 and t5t2 . In a third case one migh
assume that the time intervalt22t1 is sufficiently short in
such a way that the state of the system is approximately
same att5t1 andt5t2 @5#. In any case one ends up with th
expression

E
t1

t2S Frad2
54m2a2ȧ

35c7 1
2m2a&

15c5 D •vdt50. ~37!

From this equation one can identify the following radiatio
reaction force:

Frad5
54m2

35c7 ȧa22
2m2

15c5 a&. ~38!

This force is really unusual; the second of its terms is p
portional to the third derivative of the acceleration, that is,
the fifth derivative of the positionr (t). Hence, the equation
of motion is a fifth order differential equation:

m
d2r

dt2
5Fext1

54m2

35c7 S d2r

dt2 D
2 d3r

dt3
2

2m2

15c5

d5r

dt5
, ~39!

where m is the mass of the dipole andFext is an external
force. Therefore, it is necessary to specify five initial con
tions in order to solve Eq.~39!. Whena2ȧ anda& are the same
order over a brief interval, the first term in Eq.~39! is neg-
ligible when compared with the second one and thus Eq.~39!
can be approximated by its linear term

Frad52
2m2

15c5 a&. ~40!

Using Newton’s second law this force takes the form

a52t3a&, ~41!

wheret is a characteristic time defined by

t5S 2m2

15mc5D 1/3

. ~42!

For example, the characteristic time for an electron~m
59.28310221 erg G21 and m59.11310228 G! is t58.05
310223 sec. It is interesting to note that this characteris
time is one order of magnitude greater than the character
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time involved in the usual Abraham-Lorentz formula asso
ated to the charge of the electron,a5tȧ, which has the value
t56.26310224 sec.

The three linearly independent solutions of Eq.~41! are

a1~ t !5k1e2t/t, ~43a!

a2~ t !5k2et/2t cos~)t/2t!, ~43b!

a3~ t !5k3et/2t sin~)t/2t!, ~43c!

wherek1 , k2 , andk3 are vectorial constants. Evidently,a2
and a3 are runaway solutions. However,a1 is a reasonable
solution from a physical point of view since it predicts th
acceleration spontaneously decreases exponentially
time, which clearly agrees with the law of inertia. This pr
diction is contrary to that of the usual Abraham-Loren
equation of the point charge which has nonatural solution
consistent with the law of inertia.

Finally, it is interesting to note that Eq.~40! corresponds
~up to a constant! with the following expression derived b
Smirnov @7#:

Frad52
2m2

3c5 a&, ~44!

for a quantum nonrelativistic particle with zero electr
charge, massm, and spin magnetic momentm5gm0s @here
g is the g factor of the particle,m0 is the corresponding
magneton, ands5$s i% ( i 51,2,3) is the set of Pauli matri
ces#.
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APPENDIX: DERIVATION OF EQS. „4…, „8…, AND „9…

Consider thei th Cartesian component of the integrand
the left-hand side of Eq.~4!:

S d~u!¹83M

Rc D i

5
« ipqd~u!

Rc

]Mq

]x8p , ~A1!
-

ith

f

f

where« ipq is the three-dimensional Levi-Civita symbol wit
«12351; Mi5(M ) i ; (¹8) i5]/]x8 i , and R5uxi2x8 i u. The
summation convention on repeated indices is adopted.
right-hand side of Eq.~A1! can be expressed as

« ipqd~u!

Rc

]Mq

]x8p 5
]

]x8p S « ipqd~u!Mq

Rc D2
« ipqMq

Rc

]d~u!

]x8p

2
« ipqd~u!Mq

c

]

]x8p S 1

RD . ~A2!

The derivatives in the last two terms are

]d~u!

]x8p 52
np

c

]d~u!

]t8
,

]

]x8p S 1

RD5
np

R2 , ~A3!

wherenp5(R)p /R. With these derivatives, Eq.~A2! takes
the form

« ipqd~u!

Rc

]Mq

]x8p 5
]

]x8p S « ipqd~u!Mq

Rc D2
d~u!« ipqnpMq

R2c

1
« ipqnpMq

Rc2

]d~u!

]t8
. ~A4!

The last term may be rewritten as

« ipqnpMq

Rc2

]d~u!

]t8
5

]

]t8 S d~u!« ipqnpMq

Rc2 D
2

d~u!« ipqnp

Rc2

]Mq

]t8
, ~A5!

and therefore Eq.~A4! takes the final form

« ipqd~u!

Rc

]Mq

]x8p 52d~u!S « ipqnpMq

R2c
1

« ipqnp

Rc2

]Mq

]t8 D
1

]

]t8 S d~u!« ipqnpMq

Rc2 D
1

]

]x8p S « ipqd~u!Mq

Rc D . ~A6!

When this expression is integrated over space and time
obtains
for
ming
E E « ipqd~u!

Rc

]Mq

]x8p d3x8dt852E E d~u!S « ipqnpMq

R2c
1

« ipqnp

Rc2

]Mq

]t8 Dd3x8dt8

1E F E ]

]t8 S d~u!« ipqnpMq

Rc2 Ddt8Gd3x81E F E ]

]x8p S « ipqd~u!Mq

Rc Dd3x8Gdt8.

~A7!

The time integration in the second term of the right-hand side of Eq.~A7! gives zero because the delta function vanishes
t856`. The volume integral of the last term of Eq.~A7! becomes a surface integral, and hence vanishes at infinity assu
the magnetization is contained in a finite volume. Thus, Eq.~A7! reduces to
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E E « ipqd~u!

Rc

]Mq

]x8p d3x8dt852E E d~u!S « ipqnpMq

R2c
1

« ipqnp

Rc2

]Mq

]t8 Dd3x8dt8. ~A8!
s

ide
The vector version of this expression is precisely Eq.~4!.
Equation~8! will be now demonstrated. Thei th Cartesian

component of the integrand of the left-hand side of Eq.~8!,

S d~u!¹83~¹83M !

Rc D i

5
d~u!« ipq«qstnp

R2

]Mt

]xs8
. ~A9!

The right-hand side of this equation can be expressed a

d~u!« ipq«qstnp

R2

]Mt

]xs8
52

« ipq«qstnpMt

R2

]d~u!

]xs8

2d~u!« ipq«qstM
t

]

]xs8
S np

R2D
1

]

]xs8
S d~u!« ipq«qstnpMt

R2 D .

~A10!

The derivatives in the first two terms of the right-hand s
are

]d~u!

]xs8
52

ns

c

]d~u!

]t8
,

]

]xs8
S np

R2D5
3npns2dp

s

R3 5
4p

3
dp

sd~x2x8!. ~A11!
With these derivatives, Eq.~A10! becomes

d~u!« ipq«qstnp

R2

]Mt

]xs8
5

« ipq«qstnpnsMt

R2c

]d~u!

]t8

2d~u!« ipq«qstM
tS 3npns2dp

s

R3 D
1

4p

3
d~u!« ipq«qstM

tdp
sd~x2x8!

1
]

]xs8
S d~u!« ipq«qstnpMt

R2 D .

~A12!

The first term of the right-hand side can be written as

« ipq«qstnpnsMt

R2c

]d~u!

]t8
5

]

]t8 S « ipq«qstnpnsMt

R2c D
2

d~u!« ipq«qstnpns

R2c

]Mt

]t8

~A13!

and therefore Eq.~A12! takes the form
d~u!« ipq«qstnp

R2

]Mt

]xs8
52

d~u!« ipq«qstnpns

R2c

]Mt

]t8
2d~u!« ipq«qstM

tS 3npns2dp
s

R3 D 1
4p

3
d~u!« ipq«qstM

tdp
sd~x2x8!

1
]

]t8 S d~u!« ipq«qstnpnsMt

R2c D1
]

]xs8
S d~u!« ipq«qstnpMt

R2 D . ~A14!

Using the identity« ipq«qst5« ipq«stq5ds
i d t

p2d t
ids

p in the first three terms of the right-hand side of Eq.~A14! it becomes

d~u!« ipq«qstnp

R2

]Mt

]xs8
52d~u!S 3nintM

t2Mi

R3 1
nintṀ

t2Ṁ i

R2c
D 2

8p

3
d~u!Mid~x2x8!1

]

]t8 S d~u!« ipq«qstnpnsMt

R2c D
1

]

]xs8
S d~u!« ipq«qstnpMt

R2 D . ~A15!

Integration over space and time of this expression yields

E E d~u!« ipq«qstnp

R2

]Mt

]xs8
d3x8dt852E E d~u!S 3nintM

t2Mi

R3 1
nintṀ

t2Ṁ i

R2c
D d3x8dt8

2
8p

3 E E d~u!Mid~x2x8!d3x8dt81E F E ]

]t8 S d~u!« ipq«qstnpnsMt

R2c Ddt8Gd3x8

1E F E ]

]xs8
S d~u!« ipq«qstnpMt

R2 Dd3x8Gdt8. ~A16!
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The time integration in the second term of the right-hand side of Eq.~A16! gives zero because the delta function vanishes
t856`. The volume integral of the last term of Eq.~A16! becomes a surface integral, and hence vanishes at infinity assu
the magnetization is confined to a finite region of space. Thus, Eq.~A16! reduces to

E E d~u!« ipq«qstnp

R2

]Mt

]xs8
d3x8dt852E E d~u!S 3nintM

t2Mi

R3 1
nintṀ

t2Ṁ i

R2c D d3x8dt82
8p

3
Mi . ~A17!

When this expression is written in vector notation Eq.~8! is obtained.
The derivation of Eq.~9! is similar to that of Eq.~8!. Accordingly, after a manipulation similar to that for obtaining E

~A14!, the following identity is derived:

d~u!« ipq«qstnp

Rc

]Mt

]xs8
52d~u!S 2nintM

t

R3 1
nintṀ

t2Ṁ i

Rc2 D 1
]

]t8 S d~u!« ipq«qstnpnsMt

Rc2 D1
]

]xs8
S d~u!« ipq«qstnpMt

Rc D .

~A18!

If this identity is integrated over space and time the result is

E E d~u!« ipq«qstnp

Rc

]Mt

]xs8
d3x8dt852E E d~u!S 2nintM

t

R3 1
nintṀ

t2Ṁ i

Rc2 D d3x8dt8

1E S ]

]t8 S d~u!« ipq«qstnpnsMt

Rc2 Ddt8Dd3x81E S ]

]xs8
S d~u!« ipq«qstnpMt

Rc Dd3x8Ddt8.

~A19!

The time integration in the second term of the right-hand side of Eq.~A19! gives zero because the delta function vanishes
t856`. The volume integral of the last term of Eq.~A19! becomes a surface integral, and hence vanishes at infinity assu
the magnetization is confined to a finite region of space. Thus, Eq.~A19! reduces to

E E d~u!« ipq«qstnp

Rc

]Mt

]xs8
d3x8dt852E E d~u!S 2nintM

t

R3 1
nintṀ

t2Ṁ i

Rc2 D d3x8dt8. ~A20!

The vector version of this equation is precisely Eq.~9!.
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