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Explicit expressions for the electric and magnetic fields of a moving magnetic dipole
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Explicit expressions for the electric and magnetic fields of an arbitrarily moving particle possessing a
constant magnetic moment are derived from retarded integrals representing the solution of Maxwell’'s equa-
tions for electric and magnetic fields of a magnetized source. These expressions exhibit explicitly the useful
separation of the fields into theirR/ 1/R?, and 1R® parts. The total power radiated by this magnetic dipole
is then calculated when the velocity, acceleration, and the derivative of acceleration are parallel. The low
velocity limit of this power and the conservation of energy are used to derive a nonlinear damping force acting
on a nonrelativistic magnetic dipolgS1063-651X98)09709-9

PACS numbes): 03.50.De, 41.20.Bt, 41.60.Ap

[. INTRODUCTION source are derived. In Sec. Il these formulas are applied to
finding the fields of an oscillating magnetic dipole. In Sec.
It is well known that a dipoleat rest(at the source point 1V the electric and magnetic fields of an arbitrarily moving
X' =X,) with a constant magnetic momeptyields the mag- particle with a constant magnetic moment are derived. These
ic fi = ) — 3 =Ix=xdl i fields are expressed in terms of theiR1/1/R?, and 1R®
netostatic fieldB=[3n(n- u) — u]/R°, whereR=|x—X,| is _ p _ , ana 1F _
the magnitude oR=(x—x,), with x being the field point parts in Sec. V. The power radiated by the magnetic dipole is

andn=R/R. The natural question then arises: How is thisOPtained in Sec. VI and used to find a radiation damping
magnetostatic field modified when the dipole is set in arbiforce:

trary motion? This basic question of classical electrodynam-

ics was treated in the 1960s by several authbfsHowever, Il. THE FIELDS OF A MAGNETIZED SOURCE

it is somewhat surprising to note that none of them derived Consider the time-d dent lizati fthe C
explicit expressions for the fields of an arbitrarily moving o onsider the ime-dependent genérajjzations of the .ou-

particle with a constant magnetic moment in terms of con- mb and Biot-Savart laws as given by Jefimerile-€]. In

) . Gaussian units these laws can be writted3&s
ventional parametersn,B,8,..) and exhibiting the useful
separation of the fields into theirR/ 1/R?, and 1R® parts.

However, expressions for theRl/part of these fields, the E:J f S(u) p_g+ﬂ_ J )d3x’dt’, (13
so-called radiation fields, have recently been deri&d]. R?"Rc R&
In this paper general formulas for the electric and mag-
netic fields due to a magnetized source are derived by mak- nxJ nxJ
ing the replacements=0 andJ—cV XM into the general- B=—f f SW\ Ree * RE dx’dt’, (1b)

ized Coulomb and Biot-Savart laWyd—6| and using certain

integral relations that are proved in the Appendix. The gen- L Lo .
eral formulas are first applied to find the electric and mag—Where the time integration is from< to < and the spatial

netic fields of an oscillating magnetic dipole by recognizinglntegratlon is over all space; the retardation effect is provided

that the magnetic field contains a delta term that has beet?}y the,delta functiona(u) with u=t +R/.Cft Where R
=|x—x’| and the overdot means differentiation with respect

ignored by the standard literature. It is shown that this delta% t'. Equations(1) b d for derivi |
term accounts for the interaction energy of two oscillating qon.s fgru?hlgnelect(r:s:nan?jurizgnoerticefrile\zlllgg gfgemagﬁgziezse- d

magnetic dipoles. In a second application, novel expressionsél

for the electric and magnetic fields of a moving particle pos_sourcelvl in vacuum—in the context of this paper, the vector

sessing a constant magnetic moment are derived. The% is assumed to be the source of the fiefdland B. This
fields are given in terms of their explicitR/ 1/R?, and 1R3 means thaM must be defined independently of the proper

. : A . fields E andB (as a dipole moment density, for example
parts. The total power radiated by this magnetic dipole is The time derivative in the last term of E€la) can be

then determined, in the simple case in which the vecprs tak t of the int | b formi it tion b
B, and B are parallel. The low velocity limit of this radiated aken out of the ntegral by per or,mlng an integration by
power is used to derive a nonlinear damping force from thé:’artS and using f[he properp(u)/at B —d5(u)/ét. Thus,
conservation of energy. It is pointed out that the linearized®"® has the equivalent form of Eqa):

version of this force correspondsp to a constamtwith the

expression for a radiation damping force of a quantum par- E:f f S(u) @Jr pn d3x’ dt’
ticle with a spin magnetic moment recently derived by R’ Rc
Smirnov|[7].
The organization of this paper is as follows. In Sec. Il _i f j 5(u)J d3x' dt’ )
formulas for electric and magnetic fields of a magnetized at R '
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With the formal substitutionp=0, J—cV XM, Eq.(2) be-

comes
J S(U)V' XM 3 e
_Eff Tdth 3
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Equations(5) and (10) constitute the solution of Maxwell's
equations

The spatial derivative in this expression can be removed by

recasting it into time derivatives. In the Appendix it is shown
that

S(W)V' XM
[
Rc

ff nXM nxM I ,

(u) % T RE x'dt’. 4
Equations(3) and(4) combine to yield

J J n><M nxm n>< &' dt’ 5

() R°c R |4 xdt ©

Consider now Eq(1b) rewritten in the equivalent form

s(u)ynxJ 3ot s
—IITdth

5(u)n><J 3er e
atJ’J’ dsx'dt’.

With the substitution]—cV XM, Eq. (6) becomes

B:_ff 5(u)n><(2V’><M)

(6)

d3x’dt’

d3x’'dt’.

JJ 8(u) nx(V XM) -

In the Appendix it is shown that

ff s(u)n
e

ff s(u)n
nX(NXM)

-J] 5(“)( R

and therefore Eq<7)—(9) combine to give the expression

o oo

n><(n><|\7|)
Rc

X (V'XM)

=2 d3x’dt’

n(n-M)—M
R%c

3n(n-M)—M
R3

®)

X(V'XM)

3y’ A+’
R d°x’dt

2n(n-M)
R°c

d3x'dt’ (9

3n(n-M)—

M 3n(n-M)—M
R '

R°c

3 87M
dex'dt’ + —.

3 (10

V.-E=0, (119
V.B=0, (11b)
VXE 1078—0 11
+_H_ ] ( C)

JE
VXB- - —- =47V XM, (110

satisfying the conditions that the fields and B (and their
derivatives vanish at infinity and the sourdé is confined to

a finite region of space. It should be noted that the term
(8#/3)M in Eq. (10) is a function evaluated at the field point
and the present time. Without the presence of this “contact”
term, Egs.(5) and (10) do not strictly satisfy Maxwell's
equations. Equatiofil0) may be interpreted then as follows.
The field B is formed by two terms: The integral term rep-
resents the value d8 outside the magnetized source while
the contact term(8#/3)M represents its value inside the
source. A remarkable property of Eq®) and (10) is that
they do not involve spatial derivatives of the vectud,
which in most cases simplifies considerably the calculation
of the fields. It should be also mentioned that E@s.and
(10) (without the contact terinwere previously derived in
Ref.[2].

[ll. THE OSCILLATING MAGNETIC DIPOLE

Consider a particlat rest (at the pointxg) with a mag-
netic moment oscillating in timgu= w(t)e, wheree is its
direction. The associated magnetization vector is given by
M (x,t) =eu(t) (x—Xg). With this source the integration of
Egs.(5) and(10) yields

,u(t y)nxXe pup(t')nxe

R%c RG (123
p(t"){3n(e-n)— e} w(t){3n(e-n)—e}
R3 R%c
p(t’)nxX(nxe) 8mu(t)e S(x—xq), (12b

R& 3

where nown=(X—Xg)/|X—Xg| and the overdot means dif-
ferentiation with respect td’=t—R/c with R=|x—Xg|.
Equations(12) (without the delta termare the well-known
fields of an oscillating magnetic dipole.

The novelty in Eq.(12b) is the presence of the contact
term (8w/3)u(t)es(x—x%g), which represents the magnetic
field within the dipole. It is somewhat surprising to find that
this delta term is not usually mentioned in the standard
literature—in the static regime, however, the analogous delta
term is well known[8]; it is precisely the term that accounts
for hyperfine splitting in the ground state of hydrodéri0].
However, the delta term is necessary here for the consistency
of Egs. (12) with the Maxwell equations. Moreover, this
delta term accounts for the interaction energy of two oscil-
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lating magnetic dipoles. Indeed, the energy of an oscillating 1d n(t’)

magnetic dipoleu= u(t)e in the presence of a magnetic E=—mXC 5 f 5(t'+R(t’)/C—t)(W)dt'

field B is given byU = — u(t)e-B. In particular, the energy

of an oscillating magnetic dipolg; = w4(t)e; in the pres- 1 d? , , nity

ence of the magnetic fielB of another oscillating magnetic LT f S(t' +R(t )/C_t)( R(t,))dt , (19
dipole u,= uo(t)e; is

1 () pa(H){3(er- n) (8- M) — ey - &) where nowR(t")=|x—r(t’)| andn(t’)=[x—r(t')]/R(t’).

U= = Using the formula
() ua({3(er-n)(e; n)—er- &} g(t’)
R2c f S(f(t")—a)g(t’)dt :W f(t,):a, (16

3 ma(t) ua(t){(e-n)(e-n)—e; -6}

R¢? with f(t')=t'+R(t')/c, a=t, and df/dt’'=1—n-B, the
time integrals in Eq(15) can be performed, yielding

8w
3 Ha(t) ma(t) S(X—Xo) (61— &), (13
Eo « 1d n
~ Pedt|R1-np)
wherex—X, is the separation of the dipoles. When the di- 1 g2 n
poles are separated the delta term in @@®) can be ignored. — s [— ) (17)
However, when the dipoles are at themeplace the delta- codt® [R(1-n-B)]
term contribution accounts for the interaction energy.
IV. A MOVING PARTICLE POSSESSING A CONSTANT This equation can also be written in the convenient form

MAGNETIC MOMENT

The problem of finding the fields of a point dipole in )
arbitrary motion is somewhat different from that of comput- - E ( n )+ i d_ ( n ” %
ing the fields of a point charge in arbitrary motig. In the cdt|R(1-n-p)) c*d® \R(1-n-B)/| .
case of a moving charge one solves the usual Maxwell’s (18
equations with the sourcgsx,t)=eds{x—r(t)} andJ(x,t)
=ev(t)o{x—r(t);. By analogy one might think that for a on the understanding thatiF/dt],e, meansdF(t')/dt and
moving dipole possessing a constant magnetic moméhe  notdF(t’)/dt’, that is, the “ret” outside the square brackets

problem consists in solving Maxwell's equatioffsl) with — applies to the arguments of the functions inside and not to
the sourceM (x,t) = us{x—r(t)}. However, there is a subtle the variable of differentiatiofil1].

difference between the two cases. The electric charge is con- gy a similar procedure, wheM (x,t)= ud(x—r(t)) is

served and Lorentz invariant and thereby it is necessarilyyserted into Eq(10) and the integrations over the resulting

independent of motion. Nevertheless, the magnetic dipol@ypression are performed one obtains the magnetic field of
moment is not a Lorentz invariant. However, in the modelgn grpitrarily moving magnetic dipole:

assumed in this paper the point dipole is observed in a frame
where there is only magnetization and it is given by
M(x,t) = puS(x—r(t)).

Equation(5) can be written in the equivalent form =

3nn-p)—p 1d (3n(n~/.z)—p)

TIR(1-n-p Tcdt\RA(1-np
19 nxXM 1 d? { nX(nXp) 87
E=——ff 5(t'+R/c—t)( )d3x’dt’ Il ALY ) om _
c ot R2 +CZ dt2 R(l—nﬂ) + 3 M5(X r(t))-

ret

(19

1a2ff5'R/ nXMd3’d’
+ 25 (t'+ C_t)T x'dt’.

A similar expression but without the delta term was obtained

by Monaghan in Ref(1]. In the derivation of Eq(19), how-
(14) ever, the assumption that is a constant vector has not yet

been used. This means that E9) is valid even in the case
With the magnetizatioM (x,t) = ué{x—r(t)}, the volume thatu is a function of time. However, by performing some
integrals in Eq(14) can be done immediately, yielding derivatives in Eq(19) and makingdu/dt=0 one obtains
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_[3n(n-pw) - 3 1dn (1 dn 1 d (
T RA(1- nﬂ)+R2(1 np) |cat MmN GG #) | TENm S RETn g nﬁ)
1d2( 1 ) 1 2n (1d 2dn (1dn )
Hx(x Wt z gz | jRa=n g TRa=n g |2 ag XWXz g X0t o g e ar M
4 dn 1dn 1d 1 8
+ X(HXM)+2[L>< cat I’])] Ea(R(l——nﬁ) ret+?/u6{x—r(t)}. (20

This is an expression for the magnetic field of a moving dipole with constant magnetic moment.

V. THE EXPLICIT 1/ R%, 1/R%, AND 1/R PARTS OF THE FIELDS

Although Eqgs.(18) and(19) are relatively simple, they do not exhibit explicitly the useful separation of the fields into their
1/R, 1/R?, and 1R3 parts. Such a separation of the fields, however, can be accomplished by performing all the specified time
derivatives in Eqs(18) and(20). This task, although straightforward, is extremely laborious. It involves long and complicated
vector manipulations and the full expressions obtained for the fields turn out to be very lengthy.

It is convenient to begin with E18) rewritten as

1d< 1 )1d2( 1 ) 1dn 1 Zd( 1 )
cdt\R&1-n-p) " 2de \R1-n-pB) ]+Ea(Rz(l—n-ﬂ)+Ea R(1-n-B)

E=|n
+ L d'n (—1 ” X (21
2d? \R(1-n-p))| ~H
|
By using the resulf3] 1d 1 - 3n-B
Ed_(Rz(l—n~B)3)_ RZ(1-n-B)5¢c
1d
g (R@-n-p) _(nXp)?-2p-(n—p)
. R¥(1-n-pB)°
. 2
_ R‘(l—n.ﬁ)i—2<—¥ (an/;) , (230
The last two expressions are used to derive the following
—iR~Y1-n-B)~Xn-P) (i,j integers, (22 'eSUL
S . 1 o ( 1 )_ 3(n-B)> n-B
(B=dpl/dt’") one obtains Zae RI-np)| " R(l—n-ﬂ)5cz+ R(1=n. B)°c?
1d/ 1 0B B-(n—p) , 228 (=B~ (nxp?}(n-p
Ed_<R(1—n-ﬂ)): R(1-n g%  RA1-n B>’ R(1-n-B)°c
(239 N nx(nxpg)-B—2B-p+n-B
. R*(1-n-B)%c
1d ( 1 ) n-g B-(n—B) 2
Pl ivrrms =57 3.t 537 3 ﬂ(n B){2B-(n—pB)—(nx B)7}
cdt\R(1-n-B)) R(1—-n-B)°c R(1-n-B) -1 B
n-g
RN B (230 (nX B)?
TR0 B (238
1d 1 3n-B )
cdt (R(l—n-ﬂ)3) ~R(1-n-B)5¢c where B=d?2g/dt'2. The time derivatives of the unit vector
n are given by
B 2(nx B)*— B-(n—B)
R*(1-n-B°>
l1dn nX(nXp) (239

(230 cdt R(1-n-p)’
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1 dn nx{(n-B)xB} nx(nxp)(1-p>) n(nxp?  nx(nxp)
2dZ " RA-np°c | R(1-np? R(I-np? RA1-np"

(239

This last expression was derived by Wddg®]. Substitution of Eqs(233, (23b), and (236—(23¢ into Eq. (21) yields an
expression whose terms are arranged in order of decreasing powef: of 1/

n[B-(n—B){2B-(n—B)— (nxﬂ)z}] nx(nXB){2B-(n—P)+1-p*%}—n(nxB)*> 2n{B-(n—p)}

E=

R¥(1-n-B)° R¥(1-n-B)* R¥(1-n-B)°
L 2028 (=B = (X B (n-B) _n{nxX(nX ) B=2p B+n-Bj+nx{(n—p)X B+2nx(nx B)(n-B)}
R%(1—n-B)°c R%(1—n- B)*c
n(n- B) 3n(n- B)>2 n(n- B)
R*(1-n-pB)°c R(l—n-ﬁ)f’c2+ R(1-n-pB)*c? retxﬂ' (243
By a similar procedure, the use of Eq233), (23h), (236—(23¢g) into Eq. (20) yields
_[nX(nXw){2B-(n—p)— (nX B)*HB-(n— B} nX (nx w)(nX B)?
R3(1—n-B)° R(1-n-B)*
N uX(nX B)[1+2(n- B)—3B%]+2{nxX (nX B} X (nX w)[1+2(n- B)— 3]
R(1-n-p)*
L 3n(n )~ B (n- P} - 2nx (nx g)(nx B)>+2nx (nx B){nX (nX B)- u} —2u(nX B)?
R¥(1-n-pB)°
3n><(n><ﬂ)(n m)+3n{nx(nX ) pt+{3n(n- p) — u(n- B)— 2{nX(nX B)} X (NX p) + uX(nx B)
R3(1—n-B)?
3n(n-/u)—/u+2n><(n></u){2.3'(n—ﬁ)—(nXB)z}(n'ﬂ)+n><[nX{B+n><(B><B)}]
R3(1—n-B) R?(1-n-B)°c R%(1—n- B)%c
n><(n><u){n>< nX B)- B—2B- B+n-BI+[2nx{(n— B)X B} ]X (NX )
R*(1-n-B)‘c
4{n><(n><ﬂ)}><(n><u)(n B)+2px (nX B)(n- B)+{3n(n JORITIGE B)+3n><(n><u)(n'l?)2
R%(1—n- B)*c R?(1-n-B)%c R(1—n- B)°c?
nx(nxwm(n-B)|] 8
R’(lTlfﬂ)“cz +§M5{X—r(t)}. (24b)

ret

The complicated expressions in E¢@4) represent the elec- acceleration, time derivative of acceleration, and the mag-

tric and magnetic fields of an arbitrarily moving particle with netic moment. Thus, the complete fields rd&e E o+ Eint

a constant magnetic moment. It is now possible to answer the E,,, and B=B,,¢ait Bintt Biar+ Bgel» Where By denotes

question in the Introduction: How is the magnetostatic fieldthe delta-function term (8/3) u8{x—r(t)}, which is evalu-

of a magnetic dipole modified when it is set in arbitrary ated at the field point and the present time—this term repre-

motion? Answer: An arbitrarily moving magnetic dipole sents the magnetic field within the moving dipole; it is es-

modifies strongly its magnetostatic field in accordance withsential for achieving the consistency of Eq24) with the

Egs. (24). However, a detailed interpretation of these equaMaxwell equationg11).

tions is a very complicated task. But there are some points (2) Static limit. When the velocity, acceleration, and de-

that are relevant for an interpretation of these equations: rivative of acceleration of the magnetic dipole are zero, that
(1) Near, intermediate, and far field&s may be seen in is, when the dipole is at absolute rest, Eg4a yields E

Egs. (24), the fields separate naturally into three parts: The=0 and Eq.(24b) reduces to the well known static form:

near fields E ¢, and Be,, Which vary as 3 and depend B={3n(n- u) — u}/R3+ (87/3) uS{x—X,}, wherex, is the

on the velocity and magnetic moment; tihéermediateiields  point where the dipole is at reg3].

E;« andBy,, which vary as 1R? and depend on the velocity, (3) Uniform motion. It follows from Egs. (24) that, in

acceleration, and the magnetic moment; and ftrefields  contrast to the simple form of the fields of a charge moving

E:ar andBg,,, Which vary as IR and depend on the velocity, with constant velocity, the fields of a magnetic dipole in
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uniform motion (8= B=0) exhibit an exceedingly compli- z
cated form. The electric field is given by theRE/part of Eq.
(249 and the magnetic field by the A7 part of Eq.(24b)

plus the delta term, that i§=E,¢;,and B=B¢a Bgel-

(4) Coulombian acceleration fieldS.he presence of the
acceleration vector in the intermediate fields is remarkable—
for a moving charge the acceleration appears only in the far .
fields. This result is better recognized when one assumes low /< X
velocities. Indeed, if the velocity of the dipole is small com- ~

-

pared with that of light 3<1) then the intermediate fields in /
Y

ja

T ™D ™ ™
jwsl

Egs.(24) reduce to

FIG. 1. Geometry of the radiation process.

3an(n-B)- B

ret

int—

dP(t’) dN(t) ¢
dQ - dQ [1_n'ﬂ]retzﬂ |RE|2[1_n'B]ret-

{6n(n-w—2p}(n-B)—n(p- B)— B(n- p)
(28

R2

int=
ret2 b
(250 By using Eq.(26a one obtains

These fields may be called “Coulombian acceleration

fields.” The point here is that these fields, though depending gpt’) 1 9(n-B)* 6(n-ﬁ)2(n-k)

linearly on the acceleration, are not radiation fields since —~— a0 4nc3 (nX m)? (T-n. ,3)9+ (1-n-p)>°

they vary as R°.

(5) Radiation fieldsEvidently, the far fields appearing in (n_B)z
Egs.(24), + m

(29

3nxp(n-B)*  nxpu(n-p)
rad— R(1—n-B)°c? + R(1-n-B)*c?| (263 In order to find the total radiated powB(t’) at a fixed time
ret t’, it is necessary to specify the vectqus 8, B, andB. The
simplest example of Eq29) is one in which the vectorg,
B, and B are parallel. For the sake of simplicity consider a

are radiation fields. These fields depend on the velocity anf'29N€tic dipole that is moving along tieaxis. The geom-
linearly on the derivative of the acceleration as well as on th&try. is illustrated in Fig. 1. Thereforgg=2, B=28. B

Brag=[NlretX Erags (26b)

square of the acceleration. Now, in genef@l,8, andg are =28, and u=Zu. With these specific values and witt2
independent. This allows one to assupe 0 and =0 at = Sin 6déde andn=X(sin 0cos¢.>)+y(sm fsin ¢)+Z cos,
least instantaneously. In this case E@$6) reduce to Eq. (29 is first integrated ovet:
nx u(n: B)
Brad™| —R&Z | - (279 . ,uz 4fw sir® 6 cos 6
et P(t)= B o (1—B cos#)® o
B.,g=[Nn]etX E. 27b
rad™ [ N]ret (27D +3,u2 .2..fw sin® 6 cos 6
Therefore, even when both the velocity and the acceleration 3 BB o (1—pB cosb) o

of a magnetic dipole are instantaneously equal to zarthe
retarded timg the dipole can still produce a radiation field u?
on account of the derivative of its acceleration. + 203

.. (7 sim 6 cof @
ZJ si

X —(1‘5“39)7(19}@{ (30)

N

VI. TOTAL RADIATED POWER BY A MOVING

MAGNETIC DIPOLE The integrals ovep are computed directly and the resulting

expressions can be written in terms of powersoef (1
Consider now the energy flux associated with the radia— 8?) Y2

tion fields. It is given by the Poynting vectolS
= (C/47) E agX Brag= (C/4m) |E,od®n. With this vector one = sin® 6 cod
defines the radiated power dN(t)/dQ=(S-n)R? f
=(c/4m)|RE,,d?. This is the energy per unit time and unit
solid angle that is radiated in the directionat timet. The 4
radiated poweiN(t) is connected with the radiated power = 3—5(407/14— 60y'2+ 21y10),
P(t') expressed in terms of the dipole’s own time by means
of the relationshig13] (314

4 2
CULAPINERE: e A
o (1—pB cosb) 3BI(B-1)(B+1)
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the integrals on the right-hand side of E84) can be per-

7 sim 6 cos 6 32 783+38
f formed by parts

(1-B cosa)® 49~ 108 | (B= 5B+ 1)°

0

2 2

32ﬂ ty . :_18/.L 2 tz_zi s b

= o (10927419, (31D jtl Frag vdt 3507 [a“a v]tl 1555 [a-a—a v]tl
. 4 2 ¢ 2 2 t

fw sin® 6 cog 6 d0——i 78%+1 +% f 2a2é1~vdt—1—gcs f “3-vdt,
o (1-Bcose)’ " 15\ (B-1)°%B+1)° E e

(36)
~ 15 (8y1=T74%). (819  whered=74. The guestion now is under what conditions the

first two terms in Eq(36) vanish. A first case would be when
Substituting these values into E@0) and performing some the motion is such thad?a-v=0 anda-a—a-v=0 att
manipulation one ends up with the total power radiated by=t; andt=t,. A second case would be when the motion is
the magnetic dipole when the vectows B, B, andﬂ are  periodic since then both quantitiada- v anda- a— a- v have
parallel: the same value at=t, andt=t,. In a third case one might
assume that the time intervgl—t, is sufficiently short in

u such a way that the state of the system is approximately the

P(t")=

[ B4(40y**— 60y'2+ 2119 ] o

35c3 same at=t; andt=t, [5]. In any case one ends up with the
) expression
+ 3503 [BB2B(10Y2= 799 H suata 24 o
qu y . 8 ) rad— 3507 15(:5 .
15¢3 [B58Y =77 ) et 32 From this equation one can identify the following radiation

. , , o _ reaction force:
Evidently, the dynamics of the dipole is disturbed by this

radiation loss since it provokes a reaction force back on the 54u° . 2u?

dipole. To find an expression for the radiation reaction force Frad= 3557 aa’— 155 & (39)
Frag,» consider the low velocity limit of Eq(32). The ap-

proximation <1 implies y~1 and therebyBy=+\y“—1  This force is really unusual; the second of its terms is pro-
~0. This approximation also implies that the effect of retar-portional to the third derivative of the acceleration, that is, to
dation becomes unimportafit0]. Therefore, by writingg  the fifth derivative of the position(t). Hence, the equation

=alc andB=alc Eq. (32) reduces to of motion is a fifth order differential equation:
18u%a* 2ua? d?r 54u? (d?r\2 d° 2u? d°r
ECRT (33 Mg =Fect 357 | q2) ae S a9

It should be noted that an analogous formula for the electrigvherem is the mass of the dipole arf,, is an external
dipole has been recently deriv¢d]. As expected, the for- force. Therefore, it is necessary to specify five initial condi-
mulas for the total power radiated by electric and magnetidions in order to solve Eq39). Whena®a anda are the same
dipoles exhibit exactly the same structure. Therefore, the agrder over a brief interval, the first term in E@9) is neg-
sociated radiation reaction forces will exhibit necessarily theigible when compared with the second one and thus(&9).

same form. can be approximated by its linear term
To determineF,,4 from the conservation of energy it is )
necessary that the work done by this force on the magnetic F 2p A (40)
dipole in the intervat, <t<t, must be equal to the negative rad™ 7505
of the energy radiated, that i§}2F ¢ vdt=— [12Pdt. The ) , )
use of Eq.(33) yields Using Newton’s second law this force takes the form
g
t 18u2 [t 2u? [ty a=—174, (41)
lezrad.voltz—g—“7 J aldt- o J “a%dt. (34)
ty ¢t Jy ¢ Jy wherer is a characteristic time defined by
With the aid of the results 2u? |13
g = W) : 42
a*=— (a%a-v)—3a%a-v, (353
dt For example, the characteristic time for an electign
g =9.28x10 ?*erg G and m=9.11x10 2 G) is 7=8.05
2 2 X 10~ % sec. It is interesting to note that this characteristic
& dt (@-a-a-v)tav, (350 time is one order of magnitude greater than the characteristic
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time involved in the usual Abraham-Lorentz formula associ-wheree'P9 is the three-dimensional Levi-Civita symbol with

ated to the charge of the electran; ra, which has the value £?°=1; M'=(M)'; (V');=4d/ox"!, andR=|x'—x"|. The

7=6.26x 10" %* sec. summation convention on repeated indices is adopted. The
The three linearly independent solutions of E4fl) are right-hand side of Eq(A1) can be expressed as

a(t)=kee "7, (433 ePIs(u) Mg 4 (sipqa(u)Mq) 'PIM, 98(u)
T P - P
a,(t) = k6" cogv3t/27), (43b Re % a7 Re Re  ox
ePISuM, a (1
ag(t) =k4e"?" sin(v3t/27), (430 - c PR/ (A2)

wherek,, k,, andk; are vectorial constants. Evidentlg;,
and ag are runaway solutionsHowever,a; is a reasonable
solution from a physical point of view since it predicts that a8(u) n, 98(u) 9
acceleration spontaneously decreases exponentially with = - — T
time, which clearly agrees with the law of inertia. This pre- X c at X
diction is contrary to that of the usual Abraham-Lorentz
equation of the point charge which has natural solution
consistent with the law of inertia.

Finally, it is interesting to note that E§40) corresponds & PIs(u) My d <8ipq5(u)Mq) B 5(u)8ipqanq

The derivatives in the last two terms are

1, n,
RITR W

wheren,=(R),/R. With these derivatives, EqA2) takes
the form

(up to a constantwith the following expression derived by

Smirnov|[7]: Rc ax'P ox'P Rc R’c
iPdn M, 9S(u)
2u? . + & Vg

Fras= — 3 a, (44) R¢ ot’ (Ad4)
for a guantum nonrelativistic particle with zero electric The last term may be rewritten as
charge, mass, and spin magnetic momepi=guqo [here inq ing
g is the g factor of the particle,uq is the corresponding e pMq (95(9) — i’ (5(u)8 anq)
magneton, andr={o;} (i=1,2,3) is the set of Pauli matri- RC at ot R
ced 8(u)e™n, oM, AS

R ot (A5)
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APPENDIX: DERIVATION OF EQS. (4), (8), AND (9) at’ Rc
Consider théth Cartesian component of the integrand of N J (&PI5(u)M, (A6)
the left-hand side of Eq4): x'P Rc '
S(U)V' XM izsipq5(u) My (A1)  When this expression is integrated over space and time one
Rc Rc ox'P’ obtains
ePIs(u) Mg, ePInMy &Py Mg\ L
ff “Re —&X,pdxdt——ffé(u) R%c + RS o d°x’dt
g [dwePin Mg\ ] g (ePISWMq| o ],
+JUE( RS dth+JJﬁx'p re 990
(A7)

The time integration in the second term of the right-hand side of(&f) gives zero because the delta function vanishes for
t'=* . The volume integral of the last term of Eg\7) becomes a surface integral, and hence vanishes at infinity assuming
the magnetization is contained in a finite volume. Thus, (Bd,) reduces to
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ePIS(u) Mg ePInMy &Py Mg\
ff R—Cdedt——ff S(u) RZc + RE U d°x’dt’. (A8)
|
The vector version of this expression is precisely &9- With these derivatives, EqA10) becomes
Equation(8) will be now demonstrated. Thig¢h Cartesian

component of the integrand of the left-hand side of ), 5(u)8ipq8qstnp IM! - gipqsqstnpnth a5(u)

SV’ X (V' XM)\' 8(u)ePleqen, oM (A9) R IX¢ R°c at’

= 2 PV
Rc R &Xs 3npns_éG

. . . . _5(U)8ipq8qstMt(—3p)
The right-hand side of this equation can be expressed as R

ipq t ipq t 4 :
5(U)8 ZSqStnp (QM, __ € quztan 0”5([]]) + ? 5(u)8|pq8qstMtéGp5(X_X!)
R IXg R IXg
ing ¢ 9 [Np + 7 ( 5(u)8ipq8qstant)
_ 5(U)8 qutM ﬁ_)(é ? &X; Rz .
J (5(u)8ipq8qstant) (A12)
’ 2 .
IXs R The first term of the right-hand side can be written as
(A10)
. . . .
The derivatives in the first two terms of the right-hand side &'Peqsnpn®M" 95(u) _9 £'Pegspn°M
are R%c ot ot R%c
dé(u) n® dé(u) 5(U)Sipq8qstnpns IM'
=—— TR
X, c ot R’c at
(A13)

d [n 3n,n°— 8 4w
(—”) = %: 5 Sox—x). (AL1)
and therefore EqA12) takes the form

s(u)e'Plg gn, IM? 8(u)e'Pdg n NS IM! A 3npn°- &3\ 4w A ,
= qst''p = _ = CqS p 7 —5(U)8'pq8qstMt = p +? 5(U)8'pq8qstMté\;5(X—X )

S

d (5(u)s'pqsqstnanM‘) d (5(u)a"’qa3qstant . (ALY

+ —_— —_
at’ R°c X4 R?

Using the identitys'Pde os= £'Plegiq= 5507 — 8,8% in the first three terms of the right-hand side of E#14) it becomes

8(u)e'Pleqgn, IM! ()(3n‘ntMt—M‘ n'nMt—M
—_—_— e, — u

= +
R? X! RS R%c

d (5(u)s“"1sqstnanMt
S

O (UM s(x—x
T UM X )+ 7 i

3 [ 8(u)e'Plg i, M?
S
Integration over space and time of this expression yields
s(u)ePeqgn, oMt 3n'nMi-M! nintM‘—M‘) N
fJ' Ta—xédth——ff o(u) R + RZG d>x'dt
8m . 9 [ 8(u)e™Pde n nM?
—?ff 5(u)M'5(x—x')d3x'dt'+f fﬁ( w qu: P )dt' d3x’
3 [ 8(u)e'Plg YR
] 57( (e ety )d3x’ ' (A16)
S
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The time integration in the second term of the right-hand side of &£b6) gives zero because the delta function vanishes for
t’ =+, The volume integral of the last term of E§\16) becomes a surface integral, and hence vanishes at infinity assuming
the magnetization is confined to a finite region of space. Thus(A$) reduces to

S(u) 'qu &Mt 3nn|\/|t M ninMi—M 8r
(u) “s‘np d3x’dt’ +— d3x’dt’' — — M, (A17)
R3 R%c 3

When this expression is written in vector notation E8).is obtained.
The derivation of Eq(9) is similar to that of Eq(8). Accordingly, after a manipulation similar to that for obtaining Eq.
(A14), the following identity is derived:

!

5(u)s‘pqsqstnp(9Mt__ (2n‘ntMt nintMt—Mi) 3 (5(u)gipqsqstnpn5M‘) 3 (rS(u)s‘pqsqstant
X

= + J—
Rc P R Rc at’ Rc ! Rc

(A18)

If this identity is integrated over space and time the result is

8(u)e'Pd aMI 2n'in Mt ninMt—M
e e I L UL L P

d [ 8(u)e'Pdg n,nSM!
+J<W< (We ;gjt P )dt’)d3x’+f

The time integration in the second term of the right-hand side of &£tP) gives zero because the delta function vanishes for
t’=*o. The volume integral of the last term of E¢\19) becomes a surface integral, and hence vanishes at infinity assuming
the magnetization is confined to a finite region of space. Thus(Af) reduces to

8 [ 8(u)e'Pig n Mt
_’( () ast’p >d3x’)dt’.
OXg Rc

(A19)

S(u)eeqgn, MY 2ninMt  ninMt—M!
’ r— _ + 3y’ ! .
f f ~—TRe _axg d°x’'dt f f o(u) = RS d°x’'dt (A20)
The vector version of this equation is precisely E9).
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